

WalkDir

Module author: Nick Coghlan <ncoghlan@gmail.com>

The standard libary’s os.walk() [https://docs.python.org/3/library/os.html#os.walk] iterator provides a convenient way to
process the contents of a filesystem directory. This module provides higher
level tools based on the same interface that support filtering, depth
limiting and handling of symlink loops. The module also offers tools that
flatten the os.walk() [https://docs.python.org/3/library/os.html#os.walk] API into a simple iteration over filesystem paths.

Walk Iterables

In this module, walk_iter refers to any iterable that produces
path, subdirs, files triples sufficiently compatible with those produced
by os.walk() [https://docs.python.org/3/library/os.html#os.walk].

The module is designed so that all purely filtering operations preserve
the output of the underlying iterable. This means that named tuples, tuples
containing more than 3 values (such as those produced by os.fwalk() [https://docs.python.org/3/library/os.html#os.fwalk]),
and objects that aren’t tuples at all but are still defined such that
x[0], x[1], x[2] => dirpath, subdirs, files, can be filtered without being
converted to ordinary 3-tuples.

Changed in version 0.3: Objects produced by underlying iterables are now preserved instead of
being coerced to ordinary 3-tuples by filtering operations

Path Iteration

Four iterators are provided for iteration over filesystem paths:

	
file_paths(walk_iter)

	Iterate over the files in directories visited by the underlying walk

Directory contents are emitted in the order visited, so the underlying walk
may be either top-down or bottom-up.

	
dir_paths(walk_iter)

	Iterate over the directories visited by the underlying walk

Directories are emitted in the order visited, so the underlying walk may
be either top-down or bottom-up.

	
all_dir_paths(walk_iter)

	Iterate over all directories reachable through the underlying walk

This covers:

	all visited directories (similar to dir_paths)

	all reported subdirectories of visited directories (even if not
otherwise visited)

Example cases where the output may differ from dir_paths:

	all_dir_paths always includes symlinks to directories even when the
underlying iterator doesn’t follow symlinks

	all_dir_paths will include subdirectories of directories at the maximum
depth in a depth limited walk

This iterator expects new root directories to be emitted by the underlying
walk before any of their contents, and hence requires a top-down traversal
of the directory hierarchy.

New in version 0.4.

	
all_paths(walk_iter)

	Iterate over all paths reachable through the underlying walk

This covers:

	all visited directories

	all files in visited directories

	all reported subdirectories of visited directories (even if not
otherwise visited)

This iterator expects new root directories to be emitted by the underlying
walk before any of their contents, and hence requires a top-down traversal
of the directory hierarchy.

Changed in version 0.4: This function now combines the output of file_paths() with that
of all_dir_paths() (previously it was the combination of
file_paths() with dir_paths())

Except when the underlying iterable switches to a new root directory, the last
two functions yield subdirectory paths when visiting the parent directory,
rather than when visiting the subdirectory.

For example, given the following directory tree:

>>> tree test
test
├── file1.txt
├── file2.txt
├── test2
│ ├── file1.txt
│ ├── file2.txt
│ └── test3
└── test4
 ├── file1.txt
 └── test5

all_paths will produce:

>>> from walkdir import filtered_walk, all_paths
>>> paths = all_paths(filtered_walk('test'))
>>> print('\n'.join(paths))
test
test/file1.txt
test/file2.txt
test/test2
test/test4
test/test2/file1.txt
test/test2/file2.txt
test/test2/test3
test/test4/file1.txt
test/test4/test5

all_dir_paths will produce:

>>> from walkdir import filtered_walk, all_dir_paths
>>> paths = all_dir_paths(filtered_walk('test'))
>>> print('\n'.join(paths))
test
test/test2
test/test4
test/test2/test3
test/test4/test5

dir_paths will produce:

>>> from walkdir import filtered_walk, dir_paths
>>> paths = dir_paths(filtered_walk('test'))
>>> print('\n'.join(paths))
test
test/test2
test/test2/test3
test/test4
test/test4/test5

And file_paths will produce:

>>> from walkdir import filtered_walk, file_paths
>>> paths = file_paths(filtered_walk('test'))
>>> print('\n'.join(paths))
test/file1.txt
test/file2.txt
test/test2/file1.txt
test/test2/file2.txt
test/test4/file1.txt

Note

When used with min_depth() the output will be produced as multiple
independent walks of each directory bigger than given min_depth.

Changed in version 0.4: Subdirectories are now emitted when visiting the parent directory, rather
than when visiting the subdirectory itself. This means that subdirectories
may now be emitted without being visited (e.g. subdirectories of directories
visited by a depth-limited walk, symlinks to subdirectories when not
following links), and all subdirectories of a given parent directory are
emitted as a contiguous block, rather than being interleaved with their
respective file listings.

Directory Walking

A convenience API for walking directories with various options is provided:

	
filtered_walk(top, included_files=None, included_dirs=None, excluded_files=None, excluded_dirs=None, depth=None, followlinks=False, min_depth=None)

	This is a wrapper around os.walk() and other filesystem traversal
iterators, with these additional features:

	top may be either a string (which will be passed to os.walk())
or any iterable that produces sequences with path, subdirs, files
as the first three elements in the sequence

	allows independent glob-style filters for filenames and subdirectories

	allows a recursion depth limit to be specified

	allows a minimum depth to be specified to report only subdirectory
contents

	emits a message to stderr and skips the directory if a symlink loop
is encountered when following links

Filtered walks created by passing in a string are always top down, as
the subdirectory listings must be altered to provide a number of the
above features.

include_files, include_dirs, exclude_files and exclude_dirs are
used to apply the relevant filtering steps to the walk.

A depth of None (the default) disables depth limiting. Otherwise,
depth must be at least zero and indicates how far to descend into the
directory hierarchy. A depth of zero is useful to get separate filtered
subdirectory and file listings for top.

Setting min_depth allows directories higher in the tree to be
excluded from the walk (e.g. a min_depth of 1 excludes top, but
any subdirectories will still be processed)

followlinks enables symbolic loop detection (when set to True)
and is also passed to os.walk() when top is a string

The individual operations that support the convenience API are exposed using
an itertools [https://docs.python.org/3/library/itertools.html#module-itertools] style iterator pipeline model:

	
include_dirs(walk_iter, *include_filters)

	Use fnmatch.fnmatch() [https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch] patterns to select directories of interest

Inclusion filters are passed directly as arguments.

This filter works by modifying the subdirectory lists produced by the
underlying iterator, and hence requires a top-down traversal of the
directory hierarchy.

	
include_files(walk_iter, *include_filters)

	Use fnmatch.fnmatch() [https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch] patterns to select files of interest

Inclusion filters are passed directly as arguments

This filter does not modify the subdirectory lists produced by the
underlying iterator, and hence supports both top-down and bottom-up
traversal of the directory hierarchy.

	
exclude_dirs(walk_iter, *exclude_filters)

	Use fnmatch.fnmatch() [https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch] patterns to skip irrelevant directories

Exclusion filters are passed directly as arguments

This filter works by modifying the subdirectory lists produced by the
underlying iterator, and hence requires a top-down traversal of the
directory hierarchy.

	
exclude_files(walk_iter, *exclude_filters)

	Use fnmatch.fnmatch() [https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch] patterns to skip irrelevant files

Exclusion filters are passed directly as arguments

This filter does not modify the subdirectory lists produced by the
underlying iterator, and hence supports both top-down and bottom-up
traversal of the directory hierarchy.

	
limit_depth(walk_iter, depth)

	Limit the depth of recursion into subdirectories.

A depth of 0 limits the walk to the top level directory, a depth of 1
includes subdirectories, etc.

Path depth is calculated by counting directory separators, using the
depth of the first path produced by the underlying iterator as a
reference point.

This filter works by modifying the subdirectory lists produced by the
underlying iterator, and hence requires a top-down traversal of the
directory hierarchy.

	
min_depth(walk_iter, depth)

	Only process subdirectories beyond a minimum depth

A depth of 1 omits the top level directory, a depth of 2
starts with subdirectories 2 levels down, etc.

Path depth is calculated by counting directory separators, using the
depth of the first path produced by the underlying iterator as a
reference point.

Note

Since this filter doesn’t yield higher level directories, any
subsequent directory filtering that relies on updating the subdirectory
list will have no effect at the minimum depth. Accordingly, this filter
should only be applied after any directory filtering operations.

Note

The result of using this filter is effectively the same as
chaining multiple independent os.walk() [https://docs.python.org/3/library/os.html#os.walk] iterators using
itertools.chain() [https://docs.python.org/3/library/itertools.html#itertools.chain]. For example, given the following directory tree:

>>> tree test
test
├── file1.txt
├── file2.txt
├── test2
│ ├── file1.txt
│ ├── file2.txt
│ └── test3
└── test4
 ├── file1.txt
 └── test5

Then min_depth(os.walk("test"), depth=1) will produce the same output
as itertools.chain(os.walk("test/test2"), os.walk("test/test4")).

This filter works by modifying the subdirectory lists produced by the
underlying iterator, and hence requires a top-down traversal of the
directory hierarchy.

	
handle_symlink_loops(walk_iter, onloop=None)

	Handle symlink loops when following symlinks during a walk

By default, prints a warning and then skips processing
the directory a second time.

This can be overridden by providing the onloop callback, which
accepts the offending symlink as a parameter. Returning a true value
from this callback will mean that the directory is still processed,
otherwise it will be skipped.

This filter skips processing subdirectories by modifying the subdirectory
lists produced by the underlying iterator, and hence requires a
top-down traversal of the directory hierarchy.

Examples

Here are some examples of the module being used to explore the contents
of its own source tree:

>>> from walkdir import filtered_walk, dir_paths, all_paths, file_paths
>>> files = file_paths(filtered_walk('.', depth=0,
... included_files=['*.py', '*.txt', '*.rst']))
>>> print '\n'.join(files)
./setup.py
./walkdir.py
./NEWS.rst
./test_walkdir.py
./LICENSE.txt
./VERSION.txt
./README.txt
>>> dirs = dir_paths(filtered_walk('.', depth=1, min_depth=1,
... excluded_dirs=['__pycache__', '.git']))
>>> print '\n'.join(dirs)
./docs
./dist
>>> paths = all_paths(filtered_walk('.', depth=1,
... included_files=['*.py', '*.txt', '*.rst'],
... excluded_dirs=['__pycache__', '.git']))
>>> print '\n'.join(paths)
.
./setup.py
./walkdir.py
./NEWS.rst
./test_walkdir.py
./LICENSE.txt
./VERSION.txt
./README.txt
./docs
./docs/index.rst
./docs/conf.py
./dist

Obtaining the Module

This module can be installed directly from the Python Package Index [http://pypi.python.org] with
pip [http://www.pip-installer.org]:

pip install walkdir

Alternatively, you can download and unpack it manually from the walkdir
PyPI page [http://pypi.python.org/pypi/walkdir].

There are no operating system or distribution specific versions of this
module - it is a pure Python module that should work on all platforms.

Supported Python versions are 2.6, 2.7 and 3.1+.

Development and Support

WalkDir is developed and maintained on Gitub [https://github.com/ncoghlan/walkdir], with continuous
integration services provided by Travis-CI [https://travis-ci.org/ncoghlan/walkdir].

Problems and suggested improvements can be posted to the issue tracker [https://github.com/ncoghlan/walkdir/issues].

Release History

0.4.1 (2016-05-10)

	Include release date in release history

0.4 (2016-05-10)

	SEMANTIC CHANGE: to implement some of the fixes noted below, the
all_paths iterator has been updated to emit paths in the following
order for each directory produced by the underling iterator:

	given directory if it appears to be a new root directory (i.e. it is
not a subdirectory of the current root directory)

	files in the given directory

	subdirectories of the given directory

Previously, directories were only emitted when walked by the underling
iterator, which resulted in paths being missed in some cases.

	Thanks go to Aviv Palivoda for being the driving force behind this release,
especially in addressing a variety of issues in the way directory filtering
and symlinks to directories are handled.

	Issue #12: a new API, all_dir_paths has been added which, in addition to
the directories visited by the underlying walk, also emits:

	symlinks to directories when followlinks is disabled in the
underlying iterator

	subdirectories of leaf directories when the directory tree depth of
the underlying iterator has been limited (for example, with the
limit_depth filter)

	Issue #3: all_paths now correctly reports symlinks to directories as
directory paths, even when followlinks is disabled in the underlying
iterator (fix contributed by Aviv Palivoda)

	Issue #4: all_paths now correctly reports subdirectories at the maximum
depth when the limit_depth filter is used to trim nested subdirectories
(fix contributed by Aviv Palivoda)

	Issue #6: min_depth, all_paths, dir_paths, and file_paths
all now work correctly with os.fwalk and other underlying iterators
that produce a sequence with more than 3 elements for each directory
(fix contributed by Aviv Palivoda)

	Issue #7: all filters now explicitly indicate in their documentation whether
or not they support being used with bottom-up traversal of the underlying
directory hierarchy

	A temporary generated filesystem is now used to test symlink loop handling
and other behaviours that require a real filesystem (patch contributed by
Aviv Palivoda)

	The correct error message is now emitted when an invalid maximum depth is
passed to limit_depth on Python 2.6 (fix contributed by Aviv Palivoda)

	The correct error message is now emitted when an invalid minimum depth is
passed to min_depth on Python 2.6 (fix contributed by Aviv Palivoda)

	development has migrated from BitBucket to GitHub

0.3 (2012-01-31)

	(BitBucket) Issue #7: filter functions now pass the tuples created by underlying
iterators through without modification, using indexing rather than
tuple unpacking to access values of interest. This means WalkDir now
supports any underlying iterable that produces items where x[0], x[1],
x[2] refers to dirpath, subdirs, files. For example, if the
the iterable produces collections.namedtuple instances, those will be
passed through to the output of a filtered walk.

0.2.1 (2012-01-17)

	Add MANIFEST.in so PyPI package contains all relevant files

0.2 (2012-01-04)

	(BitBucket) Issue #6: Added a min_depth option to filtered_walk and a new
min_depth filter function to make it easier to produce a list of full
subdirectory paths

	
	(BitBucket) Issue #5: Renamed path iteration convenience APIs:

	
	iter_paths -> all_paths

	iter_dir_paths -> dir_paths

	iter_file_paths -> file_paths

	Moved version number to a VERSION.txt file (read by both docs and setup.py)

	Added NEWS.rst (and incorporated into documentation)

0.1 (2011-11-13)

	Initial release

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 w

 		 	

 		
 w	

 	
 	
 walkdir	
 Tools for iterating over filesystem directories

Index

 A
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | W

A

 	
 	all_dir_paths() (in module walkdir)

 	
 	all_paths() (in module walkdir)

D

 	
 	dir_paths() (in module walkdir)

E

 	
 	exclude_dirs() (in module walkdir)

 	
 	exclude_files() (in module walkdir)

F

 	
 	file_paths() (in module walkdir)

 	
 	filtered_walk() (in module walkdir)

H

 	
 	handle_symlink_loops() (in module walkdir)

I

 	
 	include_dirs() (in module walkdir)

 	
 	include_files() (in module walkdir)

L

 	
 	limit_depth() (in module walkdir)

M

 	
 	min_depth() (in module walkdir)

W

 	
 	walkdir (module)

 nav.xhtml

 Table of Contents

 		
 WalkDir

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

